Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Comput Struct Biotechnol J ; 19: 2497-2507, 2021.
Article in English | MEDLINE | ID: covidwho-1210901

ABSTRACT

BACKGROUND: COVID-19 is spreading rapidly all over the world, the patients' symptoms can be easily confused with other pneumonia types. Therefore, it is valuable to seek a laboratory differential diagnostic protocol of COVID-19 and other pneumonia types on admission, and to compare the dynamic changes in laboratory indicators during follow-up. METHODS: A total of 143 COVID-19, 143 bacterial pneumonia and 145 conventional viral pneumonia patients were included. The model group consisted of 140 COVID-19, 80 bacterial pneumonia and 60 conventional viral pneumonia patients, who were age and sex matched. We established a differential diagnostic model based on the laboratory results of the model group on admission via a nomogram, which was validated in an external validation group. We also compared the 400-day dynamic changes of the laboratory indicators among groups. RESULTS: LASSO regression and multivariate logistic regression showed that eosinophils (Eos), total protein (TP), prealbumin (PA), potassium (K), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDLC) could differentiate COVID-19 from other pneumonia types. The C-index of the nomogram model was 0.922. Applying the nomogram to the external validation group showed an area under the curve (AUC) of 0.902. The 400-day change trends of the laboratory indexes varied among subgroups divided by sex, age, oxygenation index (OI), and pathogen. CONCLUSION: The laboratory model was highly accurate at providing a new method to identify COVID-19 in pneumonia patients. The 400-day dynamic changes in laboratory indicators revealed that the recovery time of COVID-19 patients was not longer than that of other pneumonia types.

2.
Clin Chim Acta ; 508: 98-102, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-245188

ABSTRACT

BACKGROUND: Novel coronavirus infectious disease (COVID-19) has been spreading worldwide, and tracking laboratory indexes during the diagnosis and treatment of patients with severe COVID-19 can provide a reference for patients in other countries and regions. METHODS: We closely tracked the epidemiological history, diagnosis and treatment process, as well as dynamic changes in routine blood indicators, of a severe COVID-19 patient who was hospitalized for 26 days. RESULTS: Our study found that the patient's condition worsened in the first week after admission, white blood cells (WBCs), neutrophils, lymphocytes, monocytes, eosinophils, red blood cells (RBCs), hemoglobin, neutrophil lymphocyte ratio (NLR), platelets (PLT) and platelet lymphocyte ratio (PLR) decreased. On the 7th day of admission, the levels of these cells decreased to their lowest values, though the red blood cell distribution width (RDW) and C-reactive protein (CRP) level remained at high values. From 8 to 14 days of admission, the patient's condition improved, hypoxemia was corrected, and mechanical ventilation was discontinued. The number of WBCs, neutrophils, monocytes, eosinophils and lymphocytes increased gradually, and the erythrocyte parameters stopped declining and stabilized in a certain range; CRP decreased rapidly. On the 20th day of admission, the nucleic acid test was negative, WBC, neutrophil, CRP, NLR and PLR decreased gradually, and monocyte, lymphocyte, and eosinophil counts increased. Although RBCs and hemoglobin (Hb) levels continued to decrease, RDW gradually increased, indicating the recovery of hematopoiesis. In addition, it should be noted that monocytes and eosinophils were at extremely low levels within 10 days after admission; the recovery time of eosinophils was approximately 12 days after admission, which was earlier than other parameters, which might be of great value in judging the progress of the disease. CONCLUSIONS: Dynamic changes in routine blood parameters might be helpful for the prognosis of COVID-19 patients and evaluation of the treatment effect.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Anti-Bacterial Agents/therapeutic use , Betacoronavirus/drug effects , Biomarkers/blood , Blood Platelets/drug effects , Blood Platelets/pathology , Blood Platelets/virology , C-Reactive Protein/metabolism , COVID-19 , Cell Count , Convalescence , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Erythrocytes/drug effects , Erythrocytes/pathology , Erythrocytes/virology , Female , Humans , Middle Aged , Monocytes/drug effects , Monocytes/pathology , Monocytes/virology , Neutrophils/drug effects , Neutrophils/pathology , Neutrophils/virology , Oseltamivir/therapeutic use , Pandemics , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Prognosis , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL